
AIAA-2003-1237

An Interface for Specifying
Rigid-Body Motions for CFD Applications

Scott M. Murman, William M. Chan
Michael J. Aftosmis, Robert L. Meakin
NASA Ames Research Center
Moffett Field, CA

41st AIAA Aerospace Sciences Meeting
January 6-9, 2003 / Reno,NV

For permissionto copy or republish, contact the American Institute of Aeronautics and Astronautics
370 L'Enrant Promenade, S.W., Washington, D.C. 20024

AIAA-2003-1237

An Interface for Specifying

Rigid-Body Motions for CFD Applications

Scott M. Murman,* William M. Chan_

Michael J. Aftosmis, t and Robert L. Meakin t
NASA Ames Research Center

Moffett Field, CA 94035

Abstract

An interface for specifying rigid-body motions for CFD applications is presented. This interface

provides a means of describing a component hierarchy in a geometric configuration, as well as the

motion (prescribed or six-degree-of-freedom) associated with any component. The interface consists

of a general set of datatypes, along with rules for their interaction, and is designed to be flexible

in order to evolve as future needs dictate. The specification is currently implemented with an XML

file format which is portable across platforms and applications. The motion specification is capable

of describing general rigid body motions, aud eliminates the need to write and compile new code

within the application software for each dynamic configuration, allowing client software to automate
dynamic simulations. The interface is integrated with a GUI tool which allows rigid body motions to

be prescribed and verified interactively, promoting access to non-expert users. Illustrative examples,
as well as the raw XML source of the file specifications, are included.

Introduction mated tools for generating large "databases" of

It is common practice in CFD applications to

compute a parameter study using static configura-

tions. For example, a single (usually steady-state)

simulation can be computed for various flap de-

flection angles, freestream Mach numbers, and an-

gles of attack. In this manner a matrix of static

"snapshots" of the flowfield can be easily gener-

ated, and interrogated to discern trends. This is

possible, in part, because the inputs required by

a CFD flow solver to perform a static simulation

(those controlling the choice of scheme, timestep,

etc. aside) are usually only the geometry filename

(typically a character string) and freestream con*

ditions (scalars). If some means of varying these

input parameters can be devised, powerful auto-

*ELORET. Member AIAA
ISenior Member AIAA

IU.S. Army AFDD (AMCOM). Senior Member AIAA

Copyright @2003 by the American Institute of Aero-
nautics and Astronautics, Inc. No copyright is asserted in
the United States under Title 17, U. S. Code, The U. S.
Government has a royalty-free license to exercise all rights
under the copyright claimed herein for Governmental pur-
poses. All other rights are reserved by the copyright owner.

static simulation results can be built (cf. Refs. [1,

2]). When working with dynamic simulations how-

ever, where it is desired that the geometry move

in some manner during the computation, a simple,

yet general, means of describing the required mo-

tion is unavailable. Common methods of specifying

a moving geometry for a CFD application include

limiting the allowable motions, such as only provid-

ing a constant rotation rate about a Cartesian axis,

or requiring the user to prescribe the motion by

writing code that can be called from within the ap-

plication. The former of these is not general enough

for complex motions, while the latter does not lend

itself to automation, and requires an "expert" user

to implement. A method for describing geometric

configurations and their dynamic motions which is

general, can be automated, and is readily accessible

to non-expert users is desired.

Towards this end, this work presents a proto-

col for specifying geometric hierarchies and their

rigid-body motions. This protocol takes the form

of a general set of datatypes and rules which can

be implemented through any desired syntax, with

the current choice being the Extensible Markup

Language(XML)[3].Thislow-levelXML imple-

mentation is then "wrapped" with an Application

Programming Interface (API). With this interface

between the geometry motion and the application

tools (such as the CFD flow solver), it is possible to

build automated tools for performing dynamic sim-

ulations, such as would be required to compute a

matrix of dynamic stability derivatives (cf. Refs. [4-

6]), The specification is statable for simple ana-

lytic prescribed motions, as well as complex N-body

problems with collisions and controller feedback. A

fixed specification for the geometry motion allows

multiple application programs, such as visualiza-

tion tools, flow solvers, and post-processing tools,

to be built upon a common interface. The geom-

etry motion can be stored in a single repository,

and shared among distributed applications, which

minimizes errors due to duplication. Efforts to ex-

tend the specification to include geometry states

and non-rigid bodies are underway, and will be dis-

cussed at the end of this article. Illustrative ex-

amples are used throughout this article to describe

the specification, and the entire XML description

for these examples is included in the appendixes for

reference.

2 Design Goals

The collection of datatypes and standards for

the current geometry specification, along with the

API, file parsers, and other auxiliary packages, is

referred to as the Geometry Manipulation Proto-

col (GMP) (cf. Fig. 1). Reference to a protocol is

inspired by Internet Protocols (IP). IPs are low-
level conventions which enable data to be trans-

ferred between machines, and higher-level applica-

tions to be built upon a common standard. Simi-

larly, GMP is a set of low-level conventions which

enable geometry descriptions and manipulations to

be shared and understood among various (higher-

level) CFD applications and tools. Currently, the

interface is implemented using an XML file for-

mat along with an analytic function parser, al-

though the interface is not specific to XML. The

function parser will be described in Sec. 4. The

specification is implemented in a stand-alone li-

brary with an ANSI-C interface. This interface

is extended using the Simplified Wrapper Inter-

face Generator (SWIG)[7, 8] to support all popular

scripting languages, including Perl, Python, Java,

Tct, etc. GMP is currently integrated within an

<< Layer >7 << Layer >::,
Oversel Qvemer, CaM_.slan

\ 1 //
GMP (SWIG wrapcer)

I ×ML Parse_ I

, _ Funct,on Parser

I I

Figure 1: Schematic of GMP implementation components.
The core is a set of datatypes and standards, which are im-
plemented with an XML file specification. The XML file
parser and analytic function parser provide low-level func-
tionality. An ANSI-C API is built on top of these, and
is extended using SWIG[8] to provide an interface for all
common interpreted languages. High-level applications im-
plement a customized middleware layer on top of the API
provided by GMP.

inviscid Cartesian moving-body flow solver[9], the

OVERFLOW-D structured, overset, viscous, dy-

namic flow solver[101, as well as the OVERGRID

pre-processing Graphical User Interface (GUI)[11],

along with several support applications.

Two of the primary goMs during the develop-

ment of the current specification were: 1) that it

easily allows higher-level application programs (or

scripts) to modify the data for analyzing an entire

parameter space of dynamic simulations, and 2)

that it also enables the use of GUI's for specifying

the motion of rigid components. In order to sat-

isfy the first item, it was decided that only a plain

text (human-readable) file format could be used.

There are many schemes that could be used for

defining a plain text specification, however for the

current application the syntax should allow vari-

able definitions, comments, nested structures, and

also the ability to insert the contents of another file

(similar to the #include mechanism of the C pro-

gramming language). XML satisfies all these crite-

ria, and also provides several additional desirable

features. By implementing the rigid-body motion

specification using XML, it is possible to leverage

the large amount of development work dedicated
to XML in the web and database communities.

Public-domain and commercial software packages

exist for parsing, validating, displaying, generating

databases,andmanyothertasksformanipulating
XMLfiles.XMLisnotonlyportableacrossplat-
forms,it alsocanbe"understood"bymanydiffer-
entapplications,fromwebbrowserstowordpro-
cessors.Anexampleisthecolor-codedXMLsource
includedin the appendixes, wt_ich were generated

by a web browser. One final attractive feature of

XML for the current application is that the hier-

archical structures that appear in many geometric

configurations, and also their motions, are directly

supported by the XML language.

The motion specification is intended to be simple

and intuitive enough that it can be used for rela-

tively simple motions, such as an oscillating airfoil,

yet still be general enough to handle ally arbitrary,

complex motion. The specification allows for pre-

scribed motions (either analytically or through a

discrete table look-up), unconstrained 6-degree-of-

freedom (6-DOF) rigid-body motion, as well as con-

strained (1-DOF, 2-DOF, ...) motion. Finally, it
can describe what is referred to here as "controlled

6-DOF motion", as in a guided missile or aircraft

flying under a control system. Detailed examples

for describing a prescribed analytic motion and a

constrained 6-DOF motion are presented in this pa-

per.

One of the primary goals for the current devel-

opment was that it support extensibility, so that it

can be used in currently unanticipated roles. The

major means to meet this goal was to provide a

flexible structure that can be augmented in an al-

most arbitrary manner. The specification is inde-

pendent of any application type, such as structured

grid technology, or a particular CAD implementa-

tion. The API was also designed to be independent

of any application. Rather than provide a com-

plex API which attempts to be "all things for all

people" (and usually fails), the API is kept very

simple, and it is the responsibility of the applica-

tion programmer to build the data structures, or

complicated interfaces, which are apropos for their

particular applicationl For example, the current

GMP implementation is integrated within several

distinct applications[9-11]. Each of these applica-

tions provides a layer of "middleware" between the

interface datatypes, and tile more complex (special-

ized) data structures used within each application

code (cf. Fig. 1).

3 Typographical

Conventions

As the current work is essentially a description of

a set of datatypes, a consistent font system is used

as an aid. All datatypes from the GMP are capital-

ized and displayed in sans serif font, e.g. Configura-

tion. Most of the types have names which connote

their intention, and hence are often used as a nor-

mal part of a sentence. Hierarchical datatypes are

displayed with an indented list, such as

• Configuration

- Component

where in this case Configuration is composed of

lower-level Components. Types are provided with

a parenthetical argument which describes whether

the type is required, optional, etc. Types which are

composed of base types, such as strings, scalars,

etc. are shown with a bracketed argument contain-

ing the base types, for example Name [string] (re-

quired). Arguments which are typed in directly are

shown in fixed-width font as in 10.0*sin(2*pi*t).

4 Analytic Function Parser

The interface specification relies heavily upon a

generic function parser which is capable of pars-

ing and interpreting arbitrary analytic functions.

These analytic functions can take an arbitrary

number of arguments. The parser understands the

common mathematical operators and precedence

rules, such as "0, ^,*,/,%,+,-", common con-

stants such as rr, and most commonly used func-

tions such as "abs, log, sin, sqrt, tanh, ...". For

example, pitch rate (a(t) = 10.0sin(2rrt)) for an os-

cillating airfoil is expressed as 10.0*sin(2*pi*t),

and can be evaluated at run-time by providing an

appropriate scalar value to substitute for the vari-

able t. This substitution mechanism is provided by

the function parser API. Within the GMP, an an-

alytic function which takes no arguments replaces

the role of a scalar value, i.e. a single scalar, or

numeric value, is not an explicit type. In this man-

ner, it is possible to use variables and constants

which are appropriate to the problem, making the

interface easier to specify. For instance, an angle

of rotation can be specified as pi/4, as opposed to

0. 7854, and the result will be evaluated at run-time

by the application using the API for the function

parser*.In thecurrentspecification,a nomencla-
tureis adoptedto describetheanalyticfunction
da_atype,andoptionallytheargumentswhichare
expected.All numericfieldsarespecifiedasanar-
bitraryfunctionwhichtakesnoarguments,f(). If
ananalyticfunctiondatatypeisexpectedtotake
anargumentoftimeintheinterface,it willbede-
scribedusingf(t). A vectorof 3 numericfields,
suchasisusedto describeaposition,isspecified
asvector: f().

5 Configuration

Specification

The complete geometry which is being simulated

is referred to here as a Configuration. Before a mo-

tion can be specified, it is necessary to describe

the Configuration, so that a user can simply de-

scribe the motion of "the left rotor", as is intu-

itive, rather than being forced to refer to some

application-specific geometry description. Instead

of tightly coupling the Configuration information

with a motion specification, the means of specifying

a Configuration and the means of specifying its mo-

tion are separated. The motion specification is then

built by referring to the Configuration. This allows

different motions to easily refer to the same Con-

figuration, as well as provides the ability" to build

separate tools which extend the Configuration.

Within GMP, the Configuration description is

stored in an XML file typically named Coz_[ig.xml.

An example Configuration file for the V-22 tilt-rotor

is included in Appendix A. A typical Configuration

is often made up of lower-level pieces, referred to

here as Components. A simplified representation

of the V-22 tilt-rotor geometry is shown in Fig. 2,

with the different Components highlighted by color.

The V-22 is made up of many Components, such as

the fuselage, wing, empennage, rotors, etc. Many

of these Components can also be further broken into

smaller pieces, for example the rotors can be bro-

ken down into a nacelle, hub, and blades. This

suggests that the Configuration is composed of a

hierarchy, or tree, of Components. One possible hi-

erarchy structure for the V-22 is shown schemati-

caily in Fig. 2. Notice also that this hierarchy is not

unique, for example the rotors might be considered

as a lower-level Component of the wing, or on the

same level as the wing. These different hierarchies

*It is still possible to use a simple scalar value, and it will

evaluate to itself at run-time.

2r.,
(container) I

(strut) I I Rig::_::_e$ I

..

Figure 2: Example Configuration hierarchy for the V-22 tilt-

rotor. Component types are specified by color and text. Solid

lines represent a parent-child relationship, and dashed lines

represent a source-clone relationship.

can become important when specifying the relative

motion, however, as will be described in the next

section.

While the abstract hierarchy description of a

Configuration is helpful, at some level it must be

associated with the actual geometry that is to be

manipulated. This is accomplished by requiring

that each Component specify its Type, and option-

ally include some type-dependent Data. In order to

promote flexibility within the Configuration specifi-

cation, each type of Component is considered equal,

and can be utilized anywhere within the Configura-

tion hierarchy. Further, the Component types form

an open-ended list which can be extended by future

applications as needed. In other words, it is up to

the external applications to determine which type

of Components they can work with and understand,

not the specification, and similarly for the optional

type-dependent Data. A small number of Compo-

nent types have been developed in implementing

4

theGMPwithinthethreeapplicationcodesfrom
Refs.[9-11].Thetree-diagramofFig.2 includes
alabelwiththedifferentComponenttypes.These
typesarebrieflydescribedas

• struc:Asetofstructuredgrid(possiblyover-
lapping)surfacepatches

• tri: k surfacetriangulation

• container:Anagglomerationof lower-level
Components

• clone: An duplicateof another(non-clone)
Component

A Component of the Configuration hierarchy has

the following complete list of attributes:

• Component:

- Name [string] (required)

- Type [string] (required)

- Parent [string] (optional)

- Data [arbitrary] (optional)

- Source [string I (optional)

- Transforms (optional)

* Translate (optional)

• Displacement [vector: f0] (re-

quired)

. Rotate (optional)

• Center [vector: f0] (required)

• Axis [vector: f0] (required)

• Angle [f()] (required)

* Mirror [zlylz] (optional)

The Parent attribute is used to specify the tree

structure of the Configuration. The motion of a

Component is usually specified relative to its Parent•

Root nodes of the tree have no parents (the inter-

pretation being that the inertial reference frame is

the parent for motion), and multiple root nodes are

allowed. The Source tag specifies optional informa-

tion, such as a filename or link, for tile Component,

so that the Configuration can potentially be built

from a library' of stored Components• The Trans-

forms tag is used if the Component is to be trans-

lated, rotated, or mirrored into position within the

Configuration, and is made up of sub-types for spec-

ifying the actual transformations. All coordinates

used in the transformation are specified in the orig-

inal, untransformed (natural) coordinate system of

the appropriate geometry. The clone Type can

represent an exact duplicate, although in most in-

stances the original is copied and then Transformed

to a new position. For example, the cloned Com-

ponent can be Mirrored about the x, y, or z = 0 for

Configurations with lateral symmetry. Similarly, a

single turbine blade can be cloned and Rotated to

form a set of blades around a hub. In this manner

errors due to duplication are reduced, and a com-

mon set of methods can easily be extended to an

arbitrary number of Components.

6 Motion Specification

Each motion specification refers to the Configu-

ration description outlined in the previous section.

The specifc Components which are in motion are

referred to by their Name attribute. The motion,

or sequence of motions, is described by what is re-

ferred to as a Scenario, and is specified in an XML

file named Scenario.xml. Scenarios are parameter-

ized by time (t), starting at t = 0, with the units

of time dependent upon the application. A Sce-

nario is characterized by a number of actions, each

occurring at a specific time, and for a specific dura-

tion. Currently, two types of actions can be spec-

ified; Prescribed motions, and Aero6DOg motions.

These two types of motions are considered as dis-

tinct types as there is little commonality between

them.

6.1 Prescribed Motion

The Prescribed motion can be specified as an ar-

bitrary analytic function of time, or through a dis-

crete table look-up. The analytic functions of time

are parsed and evaluated by the stand-alone func-

tion parser described in See. 4. The time is inter-

preted as relative to the Start time of the current

Prescribed motion, and a substitution of this cur-

rent relative time is performed whenever the an-

alytic functions are evaluated. This allows a Pre-

scribed motion to be used multiple times within the
same Scenario without modification. In order to

specify the motion, either the position of a Com-

ponent must be specified, or its velocity and ini-

tial position, though both position and velocity are

usually needed by most CFD flow solvers• Since

the initial position is available from the description

of the Configuration, and it is easier to numerically

integrate a function accurately than it is to differ-

entiate,theanalyticmotionisPrescribedbypro-
vidingthetranslationalandangularvelocitiesover
thetimeperiod.Theexceptiontothisisthetable
look-upmodeofoperation,wheretheflexibilityto
specifyonlythepositionisallowed.

MotionsareusuallyPrescribedrelativeto the
parentoftheComponentwithintheConfiguration
hierarchy,andthis is thedefaultbehavior.Op-
tionsarediscussedwiththehoveringbeeexample
inSec.6.3.Themotionisspecifiedin theinitial
coordinatesystemoftheinputgeometry(afterany
requiredTransforms have been applied within the

Configuration specification).

Prescribed motions have the following required

and optional attributes:

• Prescribed

- Component [string] (required)

- Start [f()l (required)

- Duration [f()] (optional)

- lnitiatPositien (optional)

* Translate (optional)

• Displacement [vector: f()] (re-

quired)

* Rotate (optional)

Center [vector: f0] (required)

• Axis [vector: f0] (required)

• Angle [f()] (required)

* Mirror [xtylz] (optional)

- Translate (optional)

* Velocity [vector: f()] (required)

* Frame [string] (optional)

- Rotate (optional)

, Center [vector: f0] (required)

, Axis [vector: f0) (required)

* Speed [f()] (required)

* Frame [string[(optional)

Start and Duration refer to the starting time and

duration of the action• If the Duration is not speci-

fied the action is considered to be continued indefi-

nitely. Prescribed motions are allowed to overlap in

time intervals, and are ordered by their Start times.

InitialPosition allows the orientation of the Com-

ponents within a dynamic simulation to be trans-

formed after a Configuration has been "built". This

allows a general Configuration to be described, and

then specialized if necessary for a dynamic simu-

lation, i.e. it further decouples the Configuration

and motion specification. The time level t = 0 is

assumed to refer to the position of the body after

the (optional) InitialPosition transforms have been

applied• The Translate and Rotate commands spec-

ify the translational velocity of the center of mass

of the component, and the rotation rate about an

arbitrary axis through the center of rotation respec-

tively• These commands are specified in the coor-

dinates of the axis system specified by the Frame

type. Choices for Frame are body or parent, with

the default being parent. Multiple Translate and

Rotate commands can be combined within a single

Prescribed action, and are applied in the order they

are specified within the XML file.

6.2 V-22 Example

The first example Prescribed motion is a specifi-

cation of the V-22 tilt-rotor where the V-22 rotors

are transitioning from the vertical to horizontal po-

sitions (by rotating about a wing chord line), and

the blades are continuously rotating about an axis

through the rotor hub (cf. Fig. 3). The left and

right sets of blades are counter-rotating. The com-

plete Scenario specification is included in Appendix
A. All of these motions are relative to their Par-

ent in the Configuration hierarchy. Note that since

the rotor blades counter-rotate, i.e. move differ-

ently relative to their parent in the Configuration

hierarchy, it is not possible to simply clone one of

the rotors, even though the geometries involved are

simply mirror images, as this would imply that all

of their sub-Components moved in exactly the same

manner. The Configuration is thus both an abstract

topology as well as a concrete means of manipulat-

ing geometry.

6.3 Hovering Bee Example

The second example Prescribed motion is of a bee

flapping its wings to hover (cf. Figs. 4 and 5), and

is also included in Appendix B. The Configuration

for the bee is a more complex example, including

cloned Components and several levels of hierarchy.

The analytic formulation for the wing motion is

based on the observations of Ellington[12]. As op-

posed to the V-22 tilt-rotor, where the compound

motion is a superposition of the motion of various

Components relative to their Parents, here the com-

pound motion is of a single Component performing

(a)time= 0.0

(b) time : 0.35

(c) time = 0.70

t/z
\

(d) time = 1.05

Figure 3: Snapshots of V-22 rotors transitioning from the
vertical to horizontal positions, while the blades continu-
ously rotate about the rotor hub. The GMP XML specifi-
cation for this motion is included in Appendix A.

an ordered series of actions. In the V-22 example,

all of the motions are specified in the parent co-

ordinate frame, which is the default frame. When

working with a complex motion of a single compo-

nent, it is desirable to specify actions relative to the

parent or relative to the continually moving body

frame. In the flapping wing example, the motion of

the wing is specified as a stroke and flapping about

axes in the parent system, and a pitch about a wing

span axis. Setting up this (relatively) complicated
motion with the aid of the OVERGRID GUI and

current motion specification infrastructure required

approximately 15 rain.

6.4 6-DOF Motion

Along with Prescribed motions, CFD applica-

tions often simulate 6-DOF motions where the

rigid body is free to move under the influence of

aerodynamic loads. With the exception of Start

and Duration times, the specification of Prescribed

and Aero6DOF motions have little in common, and

hence are treated as separate types. A component

cannot be specified as having both Prescribed and

Aero6DOF motions overlapping in time. Once a

Component has been specified to have an Aero6DOF

motion, it is no longer considered to be a child

of its Parent (if it had one), and becomes a root

node, i.e. the Configuration specification becomes

dynamic when AerohDOF motions are considered.

Aero6DOg motions contain the same Name,

Start, Duration, and InitialPosition types as Pre-

scribed motions, but also contain sub-types for In-

ertialProperties, AppliedLoads, Constraints, and Con-

trollers. These latter are treated as sub-types of an

Aero6DOF type, as opposed to types of their own,

in order to make them more general. For exam-

ple, if the AppliedLoad was a type then it would

need to refer to the Aero6DOF motion it applied

to in some manner. The AppliedLoad type would

then need to be modified each time it was applied

to a different Component. By making AppliedLoad

a sub-type, it is implicit which Component it ap-

plies to, and it is also possible to use the same Ap-

pliedLoad with multiple Components without mod-

ification. For example, if a store ejector is mod-

eled, this ejector can be tested with different store

geometries simply by referencing the appropriate

XML code within the specification. Similar argu-

ments apply to Constraints and Controllers, as Ap-

pliedLoad. AppliedLoad, Constraints, and Controllers

can be thought of as "modifiers" for the Aero6DOF

Body 7

..................
Figure 4: Configuration hierarchy for the bee in Fig. 5. Component types are specified by color and text. Solid lines

represent a parent-child relationship, and dashed lines represent a source-clone relationship. The CMP XML specification

for this Configuration is included in Appendix B.

(a) Downstroke (left to right)

(b) UpsLroke (left to right)

Figure 5: Snapshots of a bee flapping its wings in hover. The Configuration hierarchy for this example is in Fig. 4, and

the GMP XML specification for this motion is included in Appendix [3.

type• In this manner it is possible to build a library

of ejector models, feedback systems, etc., which can

then be used within different simulations without

modification.

The complete type map for an Aero6DOF motion

is

• Aero6DOF

- Component [string] (required)

- Start [f()] (required)

- Duration [f()] (optional)

- InitialPosition (optional)

• Translate (optional)

• Displacement [vector: f()] (re-

quired)

, Rotate (optional)

• Center [vector: f0] (required)

• Axis [vector: f()] (required)

• Angle [f()] (required)

, Mirror [xlylz] (optional)

- InertialProperties (required)

• Mass [f(t)] (required)

• CenterOfMass Ivector: f(t)] (required)

* PrincipalMomentsOflnertia [vector:

f(t)] (required)

. PrincipaiAxesOrientation (required)

• Axis [vector: f()] (required)

. Angle If()] (required)

- AppliedLoads (optional)

. Start [f()] (required)

, Duration[f()] (optional)

. Frame [string] (required)

, Force [vector: f(t)] (optional)

, Moment [vector: f(t)] (optional)

- Constraint (optional)

* Start [f()] (required)

. Duration [f()] (optional)

, Translate [vector: f(t)] (optional)

. Rotate [vector: f(t)] (optional)

- Controller (optional)

The initial translational and rotational velocities

are either zero if no Prescribed motions were in ef-

fect previously, or are equal to the Prescribed val-

ues. it is assumed the origin of the PrincipalAxes

corresponds to the CenterOfMass location at the be-

ginning of the Aero6DOF motion. The InertialProp-

erties are allowed to be general functions of time,

as is necessary to model a rocket burning fuel, or a

satellite deploying an arm. it is the responsibility

of the application to implement a suitable model

for solving the 6-DOF equations under these con-

ditions.

The AppliedLoads can be specified in 3 different

coordinate frames; body, parent, and inertia?-.

An example of a parent frame woutd be a pylon

ejector force for a store separation. A constant

thrust could be modeled using an AppliedLoad in

the body frame. Constraints on the other hand are

always assumed to be relative to the parent frame.

The Constraint is specified as either a Translate con-

straint, Rotate constraint, or both. The numerical

inputs are bounded by 0 and 1, with 1 correspond-

ing to unconstrained motion and 0 for no allowed

motion relative to the parent system. The three

components of the Constraint vector are the x, y, z

components of translation or rotation. Arbitrary

functions of time can be specified for the Constraints

and AppliedLoads. Controller types are specified as

modifiers to the Aero6DOF motion, however they

are currently left vague until more experience is

gained with controlled, 6-DOF motions.

6.5 Space Shuttle Example

An example specification for an Aero6DOF mo-

tion is the Space Shuttle ejecting its two Solid

Rocket Boosters (SRB) after burnout (cf. Fig. 6).
The SRBs are free to move under the influence

of aerodynamic forces, and an additional external

ejector force is applied over the first time unit.

(a) [nitlat position

(b) Later time level

Figure 6: Snapshots of Space Shuttle SRBs releasing after
burnout. The GMP XML specification for this Configuration
and its motion is included in Appendix C.

7 Implementation

The current work specifies a set of datatypes and

rules for their interaction, without enforcing any

particular implementation model. The implemen-

tation is left to the particular applications, as dis-

cussed in Sec. 2. In fact, it is assumed that the

applications will only implement a subset of the

I Configuration i

J TransformsI I
i • _ I <Rotate ,.. I

I "4 <r_,na,ata...I
I Root | I 1 _ <Rotate... I

" r/I !/_ C:'m: ;°_m: I I I Scenario TaT3 T2T' X

i ! I " "

I <Pr=cribod .,, Prr:nnt SoYremtr I Grand: I I , 1

<Rot=o_. II Jso...,,o,.o.,....I
<Tran3Jafe .,. • for Currlmt Time

T=h ,T,x 4 ..,.., I /' '
/T--'or°'i i

'1|
Figure 7: Required transformations to place a moving Component at current time level. The transforms are applied

from the top down each vertical arrow, tforizontal arrows represent transformations that are composed of multiple parts.

Each Prescribed action is an accumulation of the individual commands, in both the parent and body systems. The similar

transformations from each Component in the hierarchy is applied to each of its children. This is done after each Component

has been initialized in the Configuration, and placed in its InitialPosition by the Scenario.

specification. For example, tile nfiddleware for the

Cartesian packageI9] is customized for unstructured
triangulated surfaces, while the overset solver[10] is
customized for structured surface patches.* Fnr-
ther, applications may choose to ignore contpli-
cated or seldom-used features. For example, im-
plementing the clone Component type adds a layer
of complexity for the implementation and may' not
be necessary for all environments. Similarly, imple-
menting a 6-DOF model which can handle variable
mass systems may not be necessary,, etc. These de-
cisions are left to the application environment.

A discussion of some features of the implementa-
tion used in [9-11] is presented in order to pro-
vide further understanding. One basic require-
ment of any implementation is the ability to eas-
ily transform between the body and inertial coor-

dinate systems. The aforementioned applications
use homogeneous transformation matrices (cf. van
Arsdale[13 D to represent the transforms, which are
capable of uniformly representing translations, ro-
tations, mirroring, dilation, etc. The net effect of
any Transform or Prescribed command is then a cu-
mulative matrix product of the individual transfor-
mations, applied in order (cf. Fig. 7). When ap-
plying the Prescribed commands, a further step is
necessary in order to account for the motion of the

*Both CFD solvers can understand the same motion Sce-

narios however, as long as the Configurations are similar.

Configuration hierarchy, as any transformation of
the P_rent component affects the position of the
child. The Prescribed command processing is han-
dled in two stages. First, a homogeneous transfor-
mation matrix is constructed by considering each
Component in isolation, then the matrices from the
Configuration hierarchy are applied by' traversing
the Configuration tree from top to bottom. The
transformations required to place a body in posi-
tion for a Prescribed command at an arbitrary time
level are shown schematically Fig. 7.

8 Summary and

Future Work

The GMP package implements a low-level spec-
ification for describing geometric configurations
and their arbitrary rigid-body motions. Higher-
level applications, such as visualization tools, au-
tomated post-processing environments, and CFD

flow solvers, are built on top of the low-level pro-
tocol. The specification is intended for either in-
teractive use through a GUI, or modification by
application control scripts as part of an automated
process. The protocol reduces the information re-
quired for describing and manipulating geometry to

an XML file which is portable between different op-
erating systems and different application programs.

10

This single repository for the specification reduces

errors due to duplication, and also provides a self-

documenting capability.

As more experience is gained with the GMP [5I

specification it will continue to evolve. The flex-

ibility to handie this evolution has been incorpo-

rated into the specification wherever possible. The [6]
stand-alone Configuration specification has many

potential uses beyond providing a means to specify

rigid-body motions. Some application areas which

are currently in development include: integrating

the Configuration specification with post-processing [7"]

tools for calculating integrated forces and moments,

providing a means for specifying a Configuration

"space" (ConfigSpace) for use when generating a

matrix of static simulations with different geomet-

ric settings, and extending the Configuration to in- [8]

clude non-rigid bodies. Deformable bodies are re-

quired in order to morph geometry within a geo- [9]
metric optimization package or perform aeroelastic

simulations. These types of low-level descriptions

are required in order to build reliable automated

tools for CFD simulations.

Within the current specification, the Controller [10]

modifier for Aero6DOF motions has been left inten-

tionally sparse until more experience is gained with

controlled simulations. One outstanding item is the

ability to repeatedly execute a command, or series

of commands, optionally in a loop. This ability is [11]

currently being added and tested within the speci-

fication by generalizing the Start time, and will be

supported in the future.

References

[1] Yarrow, M., McCann, K.M., DeVivo, A.

and Tejnil, E., "Production-Level Distributed

Parametric Study Capabilities for the Grid,"

in PTvceedings of Grid 2001 2nd International

Conference on Grid Computing, 2001.

[2t Murman, S.M., Chaderjian, N.M., and

Pandya, S. A., "Automation of a Navier-

Stokes S&C Database Generation for the Har-

rier in Ground Effect," AIAA Paper 2002-

0259, Jan. 2002.

[3] Elliotte Rusty Harold and W. Scott Means,

XML in a Nutshell: A Desktop Quick Refer-

ence. O'Reilly & Associates, Inc., 2001.

[4] Park, M. A. and Green, L. L., "Steady-state

Computation of Constant Rotational Rate

[12]

[13]

Dynamic Stability Derivatives," AIAA Paper

2000-4321, June 2000.

Oktay, E. and Akay, H. U., "CFD Predicitiions

of Dynamic Derivatives for Missiles," AIAA

Paper 2002-0276, Jan. 2002.

Murman, S.M., Aftosmis, M.J., and Berger,

M.J., "Numerical Simulation of Rolling-

Airframes Using a Multi-Level Cartesian

Method," AIAA Paper 2002-2798, June 2002.

Beazley, D.M., "SWIG: An Easy to Use Tool

for Integrating Scripting Languages with C

and C++," in Proceedings of the dth USENIX

Tcl/Tk Workshop, pp. 129-139, 1996.

"Simplified Wrapper and Interface Genera-

tor." http://www.swig.org.

Murman, S.M., Aftosmis, M.J., and Berger,

M.J., "Implicit Approaches for Moving

Boundaries in a 3-D Cartesian Method,"

AIAA Paper 2003-1119, Jan. 2003.

Chan, W., Meakin, R., and Potsdam, M.,

"CHSSI Software for Geometrically Complex

Unsteady Aerodynamic Applications," AIAA

Paper 2001-0539, Jan. 2001.

Chan, W. M., "The OVERGRID Interface

for Computational Simulations on Overset

Grids," AIAA Paper 2002-3188, June 2002.

Ellington, C.P., "The Aerodynamics of Hov-

ering Insect Flight. III. Kinematics," Phil.

Transactions of the Royal Society of London

B, 305:41-78, 1984.

van Arsdale, D., "Homogeneous Transforma-

tion Matrices for Computer Graphics," Com-

puters _ Graphics, 18(2):177-191, 1994.

11

0

Appendix

A V-22 Example

Specification

This specifies a possible Component hierarchy for

the V-22 tilt-rotor shown in Fig. 3.

,r: ,,

<Conli_uratlon>

<Co,_ponent Haam=_Starboard Nacelle" _az_nt=_Naeelles "

Tylpe."gtruc">

<Data> Grid List=82-97 </Data•

</Component>

<Compone.% R_-"Port Nacelle _ p&_t_'Nacelles" Ty_="struc">

<Data• Grid List-66-81 </Data•

<Component lla_-"Nacelles" partnt-"MainBody" Type="container"/>

<Component _."Main Body" Type-"st_c">

<Datam Grid List=l-65 </Data>

</C_ponent>

<Component _-"Starbo_d Blades" pare_t-"Starboa_d Nacelle"

TT_."struc">

<Data> Grid List-107-115 </Data>

</Component>

<Cnn_ponent Namm_"Port Blades" Parent="Port Nacelle _'

Type."struc">

<Data> Grid List=98-106 </Data>

</Compone=t>

</Configuration>

This specifies the motion of the V-22 tilt-rotor

Configuration show in Fig. 3. The rotors transition

from the vertical to horizontal positions, and the

blades are continuously rotating about the rotor

hub. The left and right sets of blades are counter-

rotating. Figure 3 contains snapshots of the motion

at 4 instances during the transition of the rotors.

_Scenario>

<Prescribed _ponent="Nacelles" Start="0" D_ration="l" >

<Rotate Center_'+0.86775, 0, 0.3742" Axlm-"0, -l, 0"

Speed=" 0.5*pi" />

</Prescribed>

<Brescribed Component="Starboard Blades" Starts"0" •

<Rotate Ce_ter-"0.903614, 0.602761, 0.662562" Axim-"O, O, I"

Speed="2.0 * pi" />

</Prescribed>

<Brescribed Component="Bort Blades" 5ta_-"G" >

<Rotate Center_'O.903614, -0.602761, 0.662562" Axis="0, 0, i"

Speed="2.0 * pi" />

</Prescribed>

</Scenario>

B Hovering Bee Example

Specification

The following is a Configuration specification for

the bee geometry shown in Fig. 4 expressed in XML

syntax:

</c_.po.._t>

<¢o_pon.,t l_.'_igh_ L_9,- _a_lnt-'l_." TTp°-'clo,e'>

<_.to> Original - "Left i_q_- </_ata>

<c_pon°nt _I-'Left Antenna." h_e_."Bead" _7_e-'tri->

<_ata> Ori_in/l = "g_ft Antennae" <l_It.>

<co_ponont _-'Thorax" _lzlnt-'_dy" ty?e=_tr_'>

<c_Fon..L l_.'Abdom,n- hre=t--so4y" _pe-'tri'_

<Component l_.'_ody" p_t°ntm'S_g _ Typ_.'container'>

<Compon.nt g_.'_ug" T_p_."container">

The following is a motion specification for the

hovering bee shown in Fig. 5 expressed in XML

syntax. The compound motion of the wings

is an ordered series of rotations; two about

body axes and one about a wing chord line.

_scen_lo _n_l_Unik-'radian'>

<_r_*==_d Cmapo_nt-'Left _nq" |t.rt.'o.25" D_atA..='O.50" >

<IPre.eribe_>

<pr._crib_dCompo_nt.'Left Ming = I_='I.I _ D_ti_.'0.50" •

<_r_,_=_b_a ¢o.po_nt='_eft rang" |tart-*o" •
<Rotate _nt_="O, -47, 0" _ia-'0, o, -i _

_p_ed='pi/3.25 * pi "eos(pi*t + _in(pillO.O))'/>
<Rotate Center-'O. 0, o- _l.='l, o, D"

ed."0.25*pi'c(pi°t}"/>

<preac_ih_d Co_ponant-'Rlght wLng" |gar_.*0.25" Dur_tio_'0.SD" •

<Rotate C_a_*_'O, 48, 13.3" Agia-"O, 0,990343, 0.0362458"

apeod-"pi" rr_-bo@/" I>

<Prescrilx'd com_o_t-"aight Wing" Star-'If" D_tion-"0.50" •
<_otat¢ _nga_"O, #8, 13. 3" /gg£1-'O, 0.g993_3, 0.0362456"

mp..d-"-pi" Vr_='body"l>

<prescribed C_on_t-"Xight Wing" ltar_-'o" >
<_otate center-'O. 47, O" _.ta-.o, o, 1"

$p_ed-"pl/3,25 • p£ *ecs(pl°t + asin(pi/10,0)}'/>

<_otat° _n_r-'0, 0, 0" AXiS='I, 0, 0"

$1_d-'-o,25"pi_cos(pi*t]'/>
</pr.scribed_

<p_._cribed _p_at=-no4y" Stmrt."0" •

<aotat. C._nt_r-'O. o, o* a=_a='o, t, o"

ap_ad-"pi*_p£/2_.01.cos(pi.t)" />

<Pr.a©ribed $,_:_,_g='Lega" $taz'_.-'O" •
<_ot.t. _n_r-'O, O, 0" _la='O. 1, O"

</Prescribed>

12

C Space Shuttle Example

Specification

The following is a Configuration spec-

ification for the Space Shuttle shown

in Fig 6 expressed in XML syntax.

<con f ig_ratlo_ a.gl.u.lt." radian'>

<Comp_._.t N.m.'Orbiter" Ty_..'stra¢'>
<Data> Urid Lia_-6,12,47-_7,_9-61,63-16,90-92,94,96-10_ </Dat^>

<Co_p_e.t _-'Lert S_B" _aremt-'_xrer_al _ank" _pe.",tru¢'>

<D_ta> Grid Li$t-16-21, 107 </Pats>

The following is the Aero6OOF Sce-

nario for the Space Shuttle SRB re-

lease expressed in XML syntm, c

<p_£ncip_iAxl.Orl_nt_£io_ Azi_.'0,0, 0,_, 1.o-_I_.'9,0"/>

<_ro6_of _mt-'Right S_"

_,,-.150_a.

_s_o.°_o>

13

